Methane emissions and carbon balance in Mediterranean wetlands and rice fields: Ebro Delta case study

<u>M. Martínez-Eixarch¹</u>, S. Fenessy², M. Viñas¹, X. Aranda¹, C. Alcaraz¹, C. Ibáñez¹ ¹IRTA- Catalonia ²Kenyon College, Ohio (EUA)

Sec. 2

12th International Symposium on Biogesochemistry of Wetlands, April, 23-26 April, Coral Springs, Florida

Study site: The Ebro Delta (S Catalonia)

The Ebro Delta is one of the most important wetland complexes in the Mediterranean with 65% of its area covered by rice fields

Rice fields are crucial for preserving biodiversity of the surrounding natural wetlands and the local economy.

Paddy rice fields, considered as semi-natural wetlands, also play crucial role in C budget:

- \rightarrow Paddy rice cultivation represents 47 % of anthropogenic CH₄ emissions
- After harvest, straw is incorporated into the soil: soil accretion, carbon sequestration
- Rice fields as sources or sink of C? Agronomic practices to modulate C budget.

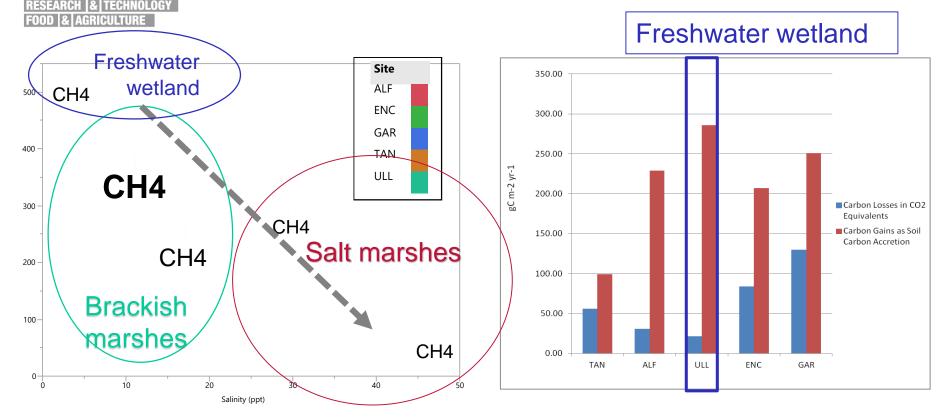
Two studies on CH4 and C accretion in natural wetlands and rice fields in the Ebro Delta

Study 1 (2013-2014)- The Effect of Landscape Position on Methane Emissions in Wetlands in the Ebro Delta

- Quantify carbon accretion and CH₄ emission rates from coastal wetlands in the Ebro Delta → the balance between C sequestration and CH₄ emissions
- Determine how salinity affects CH₄ emission rates

Study 2 Life Ebro-Admiclim project (2015-2018)- Methane emissions and C sequestration in Mediterranean rice fields.

- Estimation of CH₄ emission and seasonal pattern
- Determination of the major drivers of CH₄ emissions
- Guidelines for mitigation practices in rice fields
- Soil accretion and C sequestration in rice fields

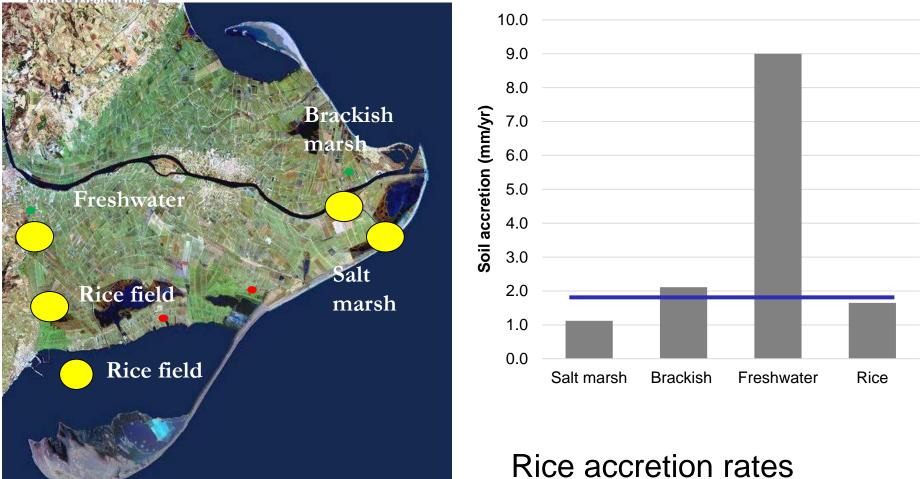


STUDY 1.- The Effect of Landscape Position on CH4 Emissions in Wetlands in the Ebro Delta

Type of wetlands	Marsh Type	Sedimentary Enviroment	Study Sites	Dominant Vegetation
	Fresh water Marshes	Impounded	Ullals	Phragmites australis
Carxal Ullals	Brackish Marshes	Coastal Lagoon	Encanyissada W	Phragmites australis
		Riverine Mouth	Garxal W	Spartina versicolor, Paspalum spp.
Encanyissada W Tancada Alfacs	Marsh Type	Sedimentary Enviroment	Study Sites	Dominant Vegetation
	Salt Marshes	Coastal Lagoon	Tancada	Sarcocornia fructicosa
		Вау	Alfacs	Sarcocornia fructicosa

The effect of salinity on carbon accretion and CH₄ emission rates

Carbon accretion and CH4 emissions were negatively related to salinity


Balance between C accretion and CH₄ emission rates across wetland types. Freshwater wetland showed highest sink capacity

Carbon Accretion

Soil accretion in natural wetlands and rice fields in Ebro Delta

Data from: Ibáñez et al 2010; Callaway et al., 2013

Rice accretion rates comparable to salt and brackish marshes

STUDY 2.- CH4 emissions: seasonal pattern and major drivers

Material and Methods (2015-2016)


Monthly sampling in 22 commercial fields in Ebre Delta

Rice fields are flooded from May to September (harvest) and left to progressively dry out over post-harvest period

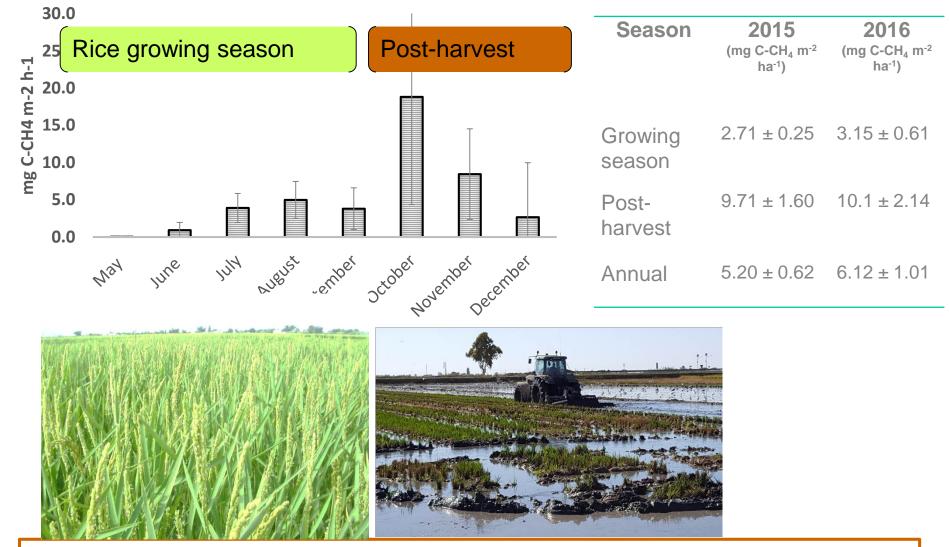
→ After harvest, straw is incorporated

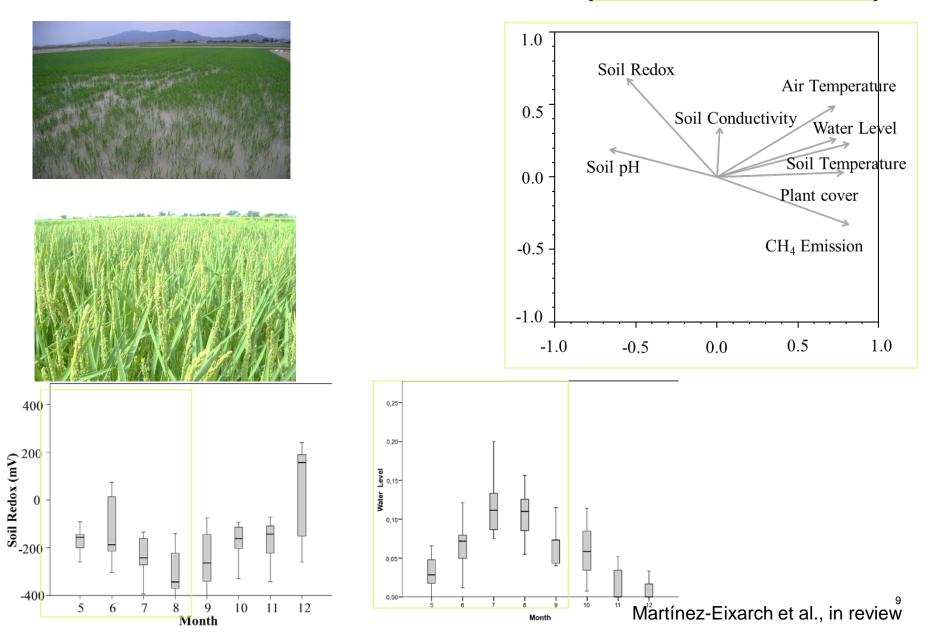
Data collection:

- CH₄: non-steady closed chambers
- Physicochemical: Soil temperature Eh, pH, conductivity
- Agronomic traits

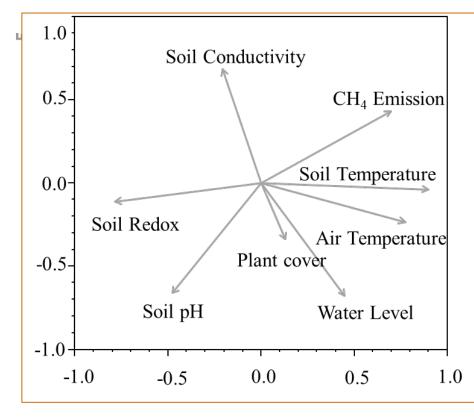
Gas sampling and analyses methodology RESEARCH & TECHNOLOGY FOOD & AGRICULTURE

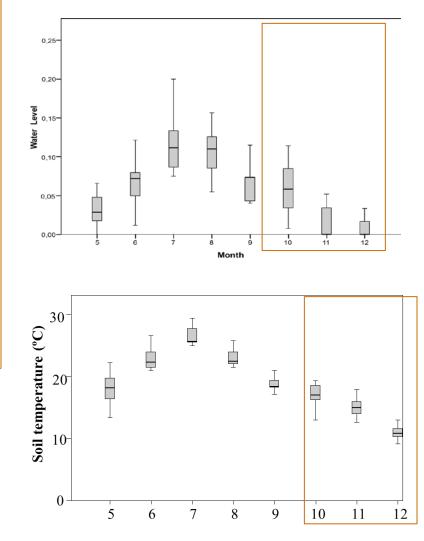
Government of Catalonia


25/05/2018


Temporal pattern of CH₄ emissions

70 % of CH4 emitted during post-harvest


Correlation among all the variables


Rice growing season

Correlation among all the variables

Post-harvest

Generalitat de Catalunya Government of Catalonia Martínez-Eixarch et al., in review

Straw incorporation

Generalized Linear Model (GLMz)

model parameter	RICE	GROWING SE	ASON	POST-HAR	VEST	
	N=20			N=26		
	SP	ß	Bias	SP	ß	Bias
(Intercept)	1.000	3.670	-0.191	1.000	-6.918	-0.115
Soil Redox	1.000	-3.798	0.026	0.453	-1.551	-1.142
Soil Temperature	0.288	0.208	-2.977	1.000	4.771	-0.263
Soil pH	0.335	-0.766	-1.776	0.135	0.009	-218.89
Soil conductivity	0.379	-0.214	-1.400	0.230	0.221	-2.331
Plant cover	0.956	0.050	0.021	0.240	0.021	-3.820
Water level	1.000	3.884	0.103	0.985	-5.240	0.044
Air temperature	0.225	0.000	1721.8	0.203	-0.360	-3.823
1 month prior to CH4 sampling	g			0.993	0.788	-0.156
2 months prior to CH4 sampling	g			0.993	-0.001	2.457
3 months prior to CH4 samplin	g			0.993	-0.556	0.703

Straw incorporated...

- \checkmark Wetlands in Ebro delta are a sink of carbon
- Soil salinity is negatively related to CH4 emissions and to soil accretion
- \checkmark Rice fields emit more CH₄ than natural wetlands
- Rice fields in Ebro Delta emitted more than <u>70% of the total annual</u> <u>emisions during post-harvest, after straw incorporation</u> >> need of more studies on straw management strategies.
- Main drivers of CH4 emissions in rice fields differ in the growing and post-harvest seasons:
 - Growing season: water level, soil redox, plant cover and temperature
 - Post-harvest season: straw incorporation, water level and soil temperature
- Soil accretion in rice fields in Ebro Delta is comparable to salt and brackish wetlands

Thank you!